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Summary: 
 
The main aim of our project is to evaluate the practicability of triangle counting in very large graphs 
with various degree distributions. Triangle counting helps to analyse big graphs/networks. Since, the 
size of these networks grow rapidly, we will need an algorithm that can cope up with this growth. In 
this project, we implemented triangle counting algorithm on CUDA. Our algorithm is a slightly 
optimized version of algorithm presented in the reference paper[1].  We are able to gain on an average 
5x speedup than the algorithm presented by authors in the paper. 

 

Background 
 
Graphs can be used to model interactions between entities in a broad spectrum of applications. Graphs 
can represent relationships in social media, the World Wide Web, biological and genetic interactions, 
co-author networks, citations, etc. Therefore, understanding the underlying structure of these graphs is 
becoming increasingly important, and one of the key techniques for understanding is based on finding 
small subgraph patterns. The most important such subgraph is the triangle. 
 
Many important measures of a graph are triangle-based, such as the clustering coefficient and the 
transitivity ratio. The clustering coefficient is frequently used in measuring the tendency of nodes to 
cluster together as well as how much a graph resembles a small-world network. The transitivity ratio 
is the probability of wedges (three connected nodes) forming a triangle. 
 
So, our code will take a graph G as input and output a single integer which would represent the 
number of distinct triangles present in the graph. E.g: Our code ran on figure 1 will return 3 number of 
triangles. With the increase in graph size the amount of search for triangles in the graph increases 
exponentially. This is where the scope of parallelism comes in, because we are only reading the data 
and such a large amount of data can be read in parallel to perform the counting more efficiently.  
Previously, many sequential algorithms have been implemented to solve this problem. Each node’s 
computation in independent with respect to each other and allel to find where all We are planning to 
implement a parallel algorithm which will run on GPUs to solve this problem. 
 
 

 
 
 
 
 



 
  
  
  
  
 
 
 

  
  
  
 

 
 
 

Figure 1: A simple graph example for algorithm illustration 
 

 

Test Graphs 
  
We are performing the analysis on the graphs mentioned in the reference paper [1]. The data sets were 
downloaded from DIMACS10 Graph Challenge and the Stanford Network Analysis Project (SNAP). 
The graph information viz., number of nodes, edges and triangles were all picked from the SNAP and 
DIMACS.  
 

Dataset Names #nodes #edges  #triangles 

coAuthorsCiteseer 227,320  1,628,268 2,713,298 

coPapersDBLP 540,486  30,491,458 444,095,058 

road central 14,081,816  33,866,826 228,918 

com-Orkut 3,072,441  234,370,166 627,584,181 

 
Table 1: Test Graphs 

 
 
  



 

Approach (VM-edge_intersection) 
 
We tried solving this problem with a number of implementations. As we learnt from our assignments, 
it is better to start with a sequential implementation and then go ahead to find the scope of parallelism.  

 
We first parallelized our implementation by iterating over the vertex and � (v1, v2) in the neighbour 
list of vertex “u”,  we check whether v2 is in the neighbor list of v1.  This problem had a complexity 
of O(n2) even in parallel solution and would result in large number of cache misses because every 
check of v2 would be a cache miss. Moreover, it would do repetitive calculation, 3 times the actual 
work required to be precise (3 times because we have 3 vertices and we are finding the same set of 3 
vertices for every vertex)  thus increasing the total time of counting and even increase cache misses 
count in the repetitive work. Most of the time required in this approach was due to the memory reads. 
We called this approach vm-vertex_intersection. This approach had a really poor performance even 
compared to the serial CPU baseline (refer table 2 in result analysis).  

 
Final parallel approach (vm-edge_intersection) and optimizations: 
We call our final approach vm-edge_intersection. In this approach we iterate over the list of edges (u, 
v) and find all neighbors common to u and v. The count of common neighbors is this iteration is the 
number of triangles this (u, v) edge is part of of. A detailed description of the algorithm, the custom 
data structures created and the optimizations done in this final approach is as follow:  
 
Input: 
Undirected graph where each node is connected to other nodes by 2 edges (1 incoming and 1 
outgoing) 
 
Output: 
Counts number of triangles in the given graph 
 
Data structures: 
 
NodeList - Contains list of neighbours for each node. All list are stored one after the 
       other in 1-d array 
ListLen  - Contains number of neighbours for each node 
 
                 NL #1         NL #2       NL #3         NL#4       NL#5  
         ↓           ↓     ↓          ↓     ↓     ↓ 

2 5 6 3 6 4 7 5 6 6 

 
Figure 2: Contents of nodeList structure for graph given in figure1 

 
NL #n = Neighbour list of node number “n” 



Pseudo Code: 
 
Step1: Create an array which stores the starting index of neighbour list of each node. This is 
done parallely by running inclusive sum over listLen array. In above example, 
For Node #1 starting index is 0 and for node #2 starting index is 3 
 
 

0 3 5 7 9 10 10 10 

 
Figure 3: Contents of start_addr structure for graph given in figure1 

 
Step2: Create list of all distinct edges from the nodeList. It is an undirected graph so, for any 
two connected nodes we have two edges (u, v) and (v, u). We will select only one edge out of the two 
where (u < v). This step can also be done parallely. To perform this step in parallel, we need to know 
which edge will go exactly where in the edgeList, so that there are no conflicts. To achieve this, we 
use the degree of each vertices to calculate a unique edge id for each edge. 

 

(1, 2) (1, 5) (1, 6) (2, 3) (2, 6) (3, 4) (3, 7) (4, 5) (4, 6) (5, 6) 

 
Figure 4: Contents of edgeList structure for graph given in figure1 

 
Step3: Apply intersection rule over edges to find if triangle is present. For every edge (u, v), 
we fetch neighbour list of both vertices “u” and “v”. If there is any common vertex “w” their 
neighbour list then we count it as a triangle with edges {(u,v) (v,w) (u,w)}. This step is done in 
parallel for every edge and count of triangles formed by each edge is stored in an CountArray. 
 
Let take an example of edge (1, 2): 
 
Neighbour list of node 1 -> {2, 5, 6} 
Neighbour list of node 2 -> {3, 6} 
 
There is only common node in the neighbour list i.e. “6”. There only one triangle can be formed 
through the edge (1, 2) 

 

1 1 0 0 0 0 0 1 0 0 

 
Figure 5: Contents of countArray structure for graph given in figure1 

 
Step4:  Reduction is applied on array obtained from last step. And it will give the total count 
 of triangles present in the given graph. For the running example, count will come out to be 3. 
 

Optimizations: 
 
1) This problem is bandwidth bound. As we have to read all the edges and neighbour list for 

each node and there is not much computation to perform. Our main aim was to reduce the 
number of memory reads. So, we removed the duplicate edges from the data graph.  The list 



will now contain only those edges (u, v) where u < v. This will reduce the size of data 
structure by a factor of 2. 

 
2) In neighbour list, we applied the same optimization. We are not storing the neighbouring 

nodes in the list where neighbour’s node ID is less than current node ID. So, for any vertex 
“u”, all the nodes present in its neighbour list have ID’s greater than “u”. We can do this 
optimization because for edge (u,v) � v < u the edge is handled in the edglist of vertex “v”. 
This also reduces the size of node list by a factor of 2. 

 
3) Another optimization is done while designing the structure of nodeList. The most quick way 

to declare nodeList is to create an array of pointers of size “numNodes”, where each pointer is 
pointing to its corresponding neighbour list. But this design of data structure is not efficient 
while moving nodeList data from host to device memory. Therefore, we decided to store 
nodeList data in 1-d array, so that we can directly move the whole data in 1 cudaMalloc and 
cudaMemcpy command thus saving cudaMalloc for every node. This approach requires extra 
calculation (calculating starting index of neighbour list for each node) but that is negligible as 
compared to doing multiple cudaMalloc and cudaMemcpy command. 

 

Results 
 
Our goal is to count the number of triangles as fast as possible and beat the results of the reference 
paper [1]. We ran our algorithms on the graphs mentioned in section 4, and have 2 baselines to 
compare our results from: 
 
1. GPU baseline (reference paper [1]):  

Ø Results mentioned in the reference paper were generated by running their 
Algorithm on NVIDIA K40C: 

- 6 GHz, 12 GB max memory, 2880 cores with 4.29 TFLOPS peak single precision 
- used CUDA 

 
2. CPU baseline (reference paper [2]): 

Ø Results mentioned in the reference paper were generated by running their 
Algorithm on AMD Opteron Processors: 

- clocked at 2.20GHz, max 6GB memory 
-  gnu g++ compiler version 3.4 with Options “-g -O2” 

 
 
Our implementation (vm-edge_intersection and vm-vertex_intersection): 

Ø Results reported using our implementation were generated by running our version of the 
algorithm on ghc46.ghc.andrew.cmu.edu with NVIDIA GTX 1080:  

 
  



The results can be summarized as:  
 

Algorithm Citeseer PaperDBLP Road_Central com-Orkut 

CPU baseline 275 ms 100.654 s 3.254 s 1950.837 s 

Tc- 
Intersection 

(GPU baseline) 

 
4.5 ms 

 
845 ms 

 
60 ms 

 
21.43 s 

Green-et al 
GPU 

13 ms 1.0 s 271 ms - 

Vm-vertex_ 
intersection 

640 ms 52.74 s 40 ms - 

Vm-edge_ 
intersection 

1.5 ms 85 ms 10 ms 5.4 s 

Speedup compared 
to CPU baseline 

 
183x 

 
1184.16x 

 
325.4x 

 
361.12x 

Speedup compared 
to GPU baseline 

 
3x 

 
9.94x 

 
6x 

 
3.96x 

              Table 2: Counting Triangle time and speedup summary  
 
 

The speedup compared to the GPU baseline can be summarized as: 

 
 

Our implementation performs best with an equal balance of #edges and #triangles and have 
managed to achieve a max speedup of 9.9x for coPapersDBLP.  



 
The speedup  compared to the CPU baseline can be summarized as: 

 
*tc-Intersection mentioned in this graph is the GPU baseline.  

 
Our GPU approach as expected achieves great speedup over CPU, with a max speedup of 
1194 on coPapersDBLP 
 
 

Comparison with Ligra: 
 
As suggested by course staff, we are including our results with ligra as a reference point. The ligra 
standalone triangle counter was ran on the same ghc46.ghc.andrew.cmu.edu (8 core Intel Xeon CPU 
E5-1660 v4 @ 3.20GHz with NVIDIA GeForce GTX 1080). Ligra is minimal, parallel, and 
lightweight graph processing framework for shared memory; and our implementation of the algorithm 
for the GPU is better than ligra. 
 
**Note: we were able to run the analysis only on com-orkut because that was the only graph we were 
successful in converting from SNAP to Ligra adjacency graph format. 
 

Algorithm com-Orkut 

Ligra 63 s 

Vm-edge_ 
intersection 

 
5.4 s 

Speedup compared 
to Ligra 

 
11.6x 

 
Table 3: Counting Triangle time and speedup compared to ligra implementation.  



Performance analysis with workload balancing: 
 
There is a problem of workload imbalance in our approach “Vm-edge_intersection”. In our approach, 
every thread in a warp is traversing neighbour list of the vertices (end point of the given edge). 
Probability of workload imbalance increases with the increase in degree of the vertices. When the 
degree of graph is large then there is possibility that some of the neighbour lists are small and some 
are very large. In this case, threads in a warp which get small list will finish up earlier and remain idle 
till other threads are finished. 
 
To solve this problem, we divided the edge lists in two groups: 

1) Small neighbour list 
2) Large neighbour list 

 
To divide the workload between these two categories,  we need to choose a threshold value of 
neighbour list length. If list length is above threshold value, it will go in large list category. We 
implemented two kernels to compute intersection between edges in the above two categories. By 
using this 2-kernel strategy and carefully choosing the threshold value, we can process the edges 
with equal workload in same thread block. And this in turn will reduce the idle time of threads. 
 
To prove our theory we did following experiments: 
 

1) Workload balancing on a graph where graph degree is very less and workload imbalance is 
not an issue. By observing the results obtained from the experiment, we can see that with 
different threshold values both kernel are getting different number of edges. However, there is 
no change in computation time as the high workload imbalance is not there. 

 

 Threshold value 

 1 2 4 6 8 

# small edges 4226987 10959922 16920991 16933367 16933413 

# large edges 12706426 5973491 12422 50 0 

Vm-edge_ 
intersection 

25 ms 25 ms 25 ms 25 ms 25 ms 

 
Table: Time taken to count triangles in graph “road_central” with different threshold values  

 
2) Workload balancing on a graph where graph degree is large and workload imbalance is an 

issue. By observing the results obtained from the experiment, we can see that with different 
threshold values both kernel are getting different number of edges. And there is a significant 
change in computation time with changes in threshold value.  

  
 



 

 Threshold value 

 50 100 200 2000 5000 

# small edges 5362484 9427119 14039668 15242430 15245729 

# large edges 9883245 5818610 1206061 3299 0 

Vm-edge_ 
intersection 

120 ms 85 ms 120 ms 110 ms 100 ms 

 
Table : Time taken to count triangles in graph “coPaperDBLP” with different threshold values 

 
There are two important things to observe here: 

1) With threshold value of 100, we are getting best result of 85ms. And as expected, when we 
increase or decrease the threshold value, workload imbalance increases and thus increase the 
computation time. 

2) But there is a contrasting behavior, when we increase the threshold from 200 to 5000, the 
computation time decreases even with the increase in work imbalance. This is because of the 
cache utilization. When we compute all the edges in the same kernel, our cache utilization 
increases because our edges are stored in sorted order. And thus, neighbour list is fetched 
once and for other times we get cache hits which helps in reducing the computation time. 

 
From above experiments, we learned that we cannot achieve both workload balancing and cache 
utilization at the same time. So, depending upon the degree of graph we should decide which 
approach to choose. Graphs where difference in length of neighbour lists is not much, then we should 
not opt for workload balancing because it will cause more overhead with no benefit. Balancing should 
be used only when there is a huge problem of workload imbalance and when the benefits from 
workload balance can overcome the decrease in performance due to increase in cache misses. 
 
 
 

Work Distribution 
 
Equal work was performed by both team members 
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