
15-618 Final Project Report

Manish Jain (manishj) Vashishtha Adtani(vadtani)

Title: Parallel Triangle Counting in a graph using CUDA

Summary:

The main aim of our project is to evaluate the practicability of triangle counting in very large graphs
with various degree distributions. Triangle counting helps to analyse big graphs/networks. Since, the
size of these networks grow rapidly, we will need an algorithm that can cope up with this growth. In
this project, we implemented triangle counting algorithm on CUDA. Our algorithm is a slightly
optimized version of algorithm presented in the reference paper[1]. We are able to gain on an average
5x speedup than the algorithm presented by authors in the paper.

Background

Graphs can be used to model interactions between entities in a broad spectrum of applications. Graphs
can represent relationships in social media, the World Wide Web, biological and genetic interactions,
co-author networks, citations, etc. Therefore, understanding the underlying structure of these graphs is
becoming increasingly important, and one of the key techniques for understanding is based on finding
small subgraph patterns. The most important such subgraph is the triangle.

Many important measures of a graph are triangle-based, such as the clustering coefficient and the
transitivity ratio. The clustering coefficient is frequently used in measuring the tendency of nodes to
cluster together as well as how much a graph resembles a small-world network. The transitivity ratio
is the probability of wedges (three connected nodes) forming a triangle.

So, our code will take a graph G as input and output a single integer which would represent the
number of distinct triangles present in the graph. E.g: Our code ran on figure 1 will return 3 number of
triangles. With the increase in graph size the amount of search for triangles in the graph increases
exponentially. This is where the scope of parallelism comes in, because we are only reading the data
and such a large amount of data can be read in parallel to perform the counting more efficiently.
Previously, many sequential algorithms have been implemented to solve this problem. Each node’s
computation in independent with respect to each other and allel to find where all We are planning to
implement a parallel algorithm which will run on GPUs to solve this problem.

Figure 1: A simple graph example for algorithm illustration

Test Graphs

We are performing the analysis on the graphs mentioned in the reference paper [1]. The data sets were
downloaded from DIMACS10 Graph Challenge and the Stanford Network Analysis Project (SNAP).
The graph information viz., number of nodes, edges and triangles were all picked from the SNAP and
DIMACS.

Dataset Names #nodes #edges #triangles

coAuthorsCiteseer 227,320 1,628,268 2,713,298

coPapersDBLP 540,486 30,491,458 444,095,058

road central 14,081,816 33,866,826 228,918

com-Orkut 3,072,441 234,370,166 627,584,181

Table 1: Test Graphs

Approach (VM-edge_intersection)

We tried solving this problem with a number of implementations. As we learnt from our assignments,
it is better to start with a sequential implementation and then go ahead to find the scope of parallelism.

We first parallelized our implementation by iterating over the vertex and � (v1, v2) in the neighbour
list of vertex “u”, we check whether v2 is in the neighbor list of v1. This problem had a complexity
of O(n2) even in parallel solution and would result in large number of cache misses because every
check of v2 would be a cache miss. Moreover, it would do repetitive calculation, 3 times the actual
work required to be precise (3 times because we have 3 vertices and we are finding the same set of 3
vertices for every vertex) thus increasing the total time of counting and even increase cache misses
count in the repetitive work. Most of the time required in this approach was due to the memory reads.
We called this approach vm-vertex_intersection. This approach had a really poor performance even
compared to the serial CPU baseline (refer table 2 in result analysis).

Final parallel approach (vm-edge_intersection) and optimizations:
We call our final approach vm-edge_intersection. In this approach we iterate over the list of edges (u,
v) and find all neighbors common to u and v. The count of common neighbors is this iteration is the
number of triangles this (u, v) edge is part of of. A detailed description of the algorithm, the custom
data structures created and the optimizations done in this final approach is as follow:

Input:
Undirected graph where each node is connected to other nodes by 2 edges (1 incoming and 1
outgoing)

Output:
Counts number of triangles in the given graph

Data structures:

NodeList - Contains list of neighbours for each node. All list are stored one after the
 other in 1-d array
ListLen - Contains number of neighbours for each node

 NL #1 NL #2 NL #3 NL#4 NL#5
 ↓ ↓ ↓ ↓ ↓ ↓

2 5 6 3 6 4 7 5 6 6

Figure 2: Contents of nodeList structure for graph given in figure1

NL #n = Neighbour list of node number “n”

Pseudo Code:

Step1: Create an array which stores the starting index of neighbour list of each node. This is
done parallely by running inclusive sum over listLen array. In above example,
For Node #1 starting index is 0 and for node #2 starting index is 3

0 3 5 7 9 10 10 10

Figure 3: Contents of start_addr structure for graph given in figure1

Step2: Create list of all distinct edges from the nodeList. It is an undirected graph so, for any
two connected nodes we have two edges (u, v) and (v, u). We will select only one edge out of the two
where (u < v). This step can also be done parallely. To perform this step in parallel, we need to know
which edge will go exactly where in the edgeList, so that there are no conflicts. To achieve this, we
use the degree of each vertices to calculate a unique edge id for each edge.

(1, 2) (1, 5) (1, 6) (2, 3) (2, 6) (3, 4) (3, 7) (4, 5) (4, 6) (5, 6)

Figure 4: Contents of edgeList structure for graph given in figure1

Step3: Apply intersection rule over edges to find if triangle is present. For every edge (u, v),
we fetch neighbour list of both vertices “u” and “v”. If there is any common vertex “w” their
neighbour list then we count it as a triangle with edges {(u,v) (v,w) (u,w)}. This step is done in
parallel for every edge and count of triangles formed by each edge is stored in an CountArray.

Let take an example of edge (1, 2):

Neighbour list of node 1 -> {2, 5, 6}
Neighbour list of node 2 -> {3, 6}

There is only common node in the neighbour list i.e. “6”. There only one triangle can be formed
through the edge (1, 2)

1 1 0 0 0 0 0 1 0 0

Figure 5: Contents of countArray structure for graph given in figure1

Step4: Reduction is applied on array obtained from last step. And it will give the total count
 of triangles present in the given graph. For the running example, count will come out to be 3.

Optimizations:

1) This problem is bandwidth bound. As we have to read all the edges and neighbour list for

each node and there is not much computation to perform. Our main aim was to reduce the
number of memory reads. So, we removed the duplicate edges from the data graph. The list

will now contain only those edges (u, v) where u < v. This will reduce the size of data
structure by a factor of 2.

2) In neighbour list, we applied the same optimization. We are not storing the neighbouring

nodes in the list where neighbour’s node ID is less than current node ID. So, for any vertex
“u”, all the nodes present in its neighbour list have ID’s greater than “u”. We can do this
optimization because for edge (u,v) � v < u the edge is handled in the edglist of vertex “v”.
This also reduces the size of node list by a factor of 2.

3) Another optimization is done while designing the structure of nodeList. The most quick way

to declare nodeList is to create an array of pointers of size “numNodes”, where each pointer is
pointing to its corresponding neighbour list. But this design of data structure is not efficient
while moving nodeList data from host to device memory. Therefore, we decided to store
nodeList data in 1-d array, so that we can directly move the whole data in 1 cudaMalloc and
cudaMemcpy command thus saving cudaMalloc for every node. This approach requires extra
calculation (calculating starting index of neighbour list for each node) but that is negligible as
compared to doing multiple cudaMalloc and cudaMemcpy command.

Results

Our goal is to count the number of triangles as fast as possible and beat the results of the reference
paper [1]. We ran our algorithms on the graphs mentioned in section 4, and have 2 baselines to
compare our results from:

1. GPU baseline (reference paper [1]):

Ø Results mentioned in the reference paper were generated by running their
Algorithm on NVIDIA K40C:

- 6 GHz, 12 GB max memory, 2880 cores with 4.29 TFLOPS peak single precision
- used CUDA

2. CPU baseline (reference paper [2]):

Ø Results mentioned in the reference paper were generated by running their
Algorithm on AMD Opteron Processors:

- clocked at 2.20GHz, max 6GB memory
- gnu g++ compiler version 3.4 with Options “-g -O2”

Our implementation (vm-edge_intersection and vm-vertex_intersection):

Ø Results reported using our implementation were generated by running our version of the
algorithm on ghc46.ghc.andrew.cmu.edu with NVIDIA GTX 1080:

The results can be summarized as:

Algorithm Citeseer PaperDBLP Road_Central com-Orkut

CPU baseline 275 ms 100.654 s 3.254 s 1950.837 s

Tc-
Intersection

(GPU baseline)

4.5 ms

845 ms

60 ms

21.43 s

Green-et al
GPU

13 ms 1.0 s 271 ms -

Vm-vertex_
intersection

640 ms 52.74 s 40 ms -

Vm-edge_
intersection

1.5 ms 85 ms 10 ms 5.4 s

Speedup compared
to CPU baseline

183x

1184.16x

325.4x

361.12x

Speedup compared
to GPU baseline

3x

9.94x

6x

3.96x

 Table 2: Counting Triangle time and speedup summary

The speedup compared to the GPU baseline can be summarized as:

Our implementation performs best with an equal balance of #edges and #triangles and have
managed to achieve a max speedup of 9.9x for coPapersDBLP.

The speedup compared to the CPU baseline can be summarized as:

*tc-Intersection mentioned in this graph is the GPU baseline.

Our GPU approach as expected achieves great speedup over CPU, with a max speedup of
1194 on coPapersDBLP

Comparison with Ligra:

As suggested by course staff, we are including our results with ligra as a reference point. The ligra
standalone triangle counter was ran on the same ghc46.ghc.andrew.cmu.edu (8 core Intel Xeon CPU
E5-1660 v4 @ 3.20GHz with NVIDIA GeForce GTX 1080). Ligra is minimal, parallel, and
lightweight graph processing framework for shared memory; and our implementation of the algorithm
for the GPU is better than ligra.

**Note: we were able to run the analysis only on com-orkut because that was the only graph we were
successful in converting from SNAP to Ligra adjacency graph format.

Algorithm com-Orkut

Ligra 63 s

Vm-edge_
intersection

5.4 s

Speedup compared
to Ligra

11.6x

Table 3: Counting Triangle time and speedup compared to ligra implementation.

Performance analysis with workload balancing:

There is a problem of workload imbalance in our approach “Vm-edge_intersection”. In our approach,
every thread in a warp is traversing neighbour list of the vertices (end point of the given edge).
Probability of workload imbalance increases with the increase in degree of the vertices. When the
degree of graph is large then there is possibility that some of the neighbour lists are small and some
are very large. In this case, threads in a warp which get small list will finish up earlier and remain idle
till other threads are finished.

To solve this problem, we divided the edge lists in two groups:

1) Small neighbour list
2) Large neighbour list

To divide the workload between these two categories, we need to choose a threshold value of
neighbour list length. If list length is above threshold value, it will go in large list category. We
implemented two kernels to compute intersection between edges in the above two categories. By
using this 2-kernel strategy and carefully choosing the threshold value, we can process the edges
with equal workload in same thread block. And this in turn will reduce the idle time of threads.

To prove our theory we did following experiments:

1) Workload balancing on a graph where graph degree is very less and workload imbalance is
not an issue. By observing the results obtained from the experiment, we can see that with
different threshold values both kernel are getting different number of edges. However, there is
no change in computation time as the high workload imbalance is not there.

 Threshold value

 1 2 4 6 8

small edges 4226987 10959922 16920991 16933367 16933413

large edges 12706426 5973491 12422 50 0

Vm-edge_
intersection

25 ms 25 ms 25 ms 25 ms 25 ms

Table: Time taken to count triangles in graph “road_central” with different threshold values

2) Workload balancing on a graph where graph degree is large and workload imbalance is an

issue. By observing the results obtained from the experiment, we can see that with different
threshold values both kernel are getting different number of edges. And there is a significant
change in computation time with changes in threshold value.

 Threshold value

 50 100 200 2000 5000

small edges 5362484 9427119 14039668 15242430 15245729

large edges 9883245 5818610 1206061 3299 0

Vm-edge_
intersection

120 ms 85 ms 120 ms 110 ms 100 ms

Table : Time taken to count triangles in graph “coPaperDBLP” with different threshold values

There are two important things to observe here:

1) With threshold value of 100, we are getting best result of 85ms. And as expected, when we
increase or decrease the threshold value, workload imbalance increases and thus increase the
computation time.

2) But there is a contrasting behavior, when we increase the threshold from 200 to 5000, the
computation time decreases even with the increase in work imbalance. This is because of the
cache utilization. When we compute all the edges in the same kernel, our cache utilization
increases because our edges are stored in sorted order. And thus, neighbour list is fetched
once and for other times we get cache hits which helps in reducing the computation time.

From above experiments, we learned that we cannot achieve both workload balancing and cache
utilization at the same time. So, depending upon the degree of graph we should decide which
approach to choose. Graphs where difference in length of neighbour lists is not much, then we should
not opt for workload balancing because it will cause more overhead with no benefit. Balancing should
be used only when there is a huge problem of workload imbalance and when the benefits from
workload balance can overcome the decrease in performance due to increase in cache misses.

Work Distribution

Equal work was performed by both team members

References

[1] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D. Owens, A Comparative Study on

Exact Triangle Counting Algorithms on the GPU. In Proceedings of the ACM Workshop on
High Performance Graph Processing Pages 1-8, 2016

[2] O. Green, P. Yalamanchili, and L.-M. Mungua. Fast triangle counting on the GPU. In

Proceedings of the Fourth Workshop on Irregular Applications: Architectures and
Algorithms, IA3 '14, pages 1-8, 2014.

[3] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an

experimental study. In Proceedings of the 4th International Conference on Experimental and
Ecient Algorithms, WEA'05, pages 606-609, 2005

[4] Ligra: https://github.com/jshun/ligra

[5] Julian Shun and Guy Blelloch. Ligra: A Lightweight Graph Processing Framework for Shared
 Memory. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
 Parallel Programming (PPoPP), pp. 135-146, 2013.

[6] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis and Michael Mahoney. Parallel
 Local Graph Clustering. Proceedings of the International Conference on Very Large Data
 Bases (VLDB), 2016.

